DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI‘s first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement finding out to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying feature is its support learning (RL) step, which was used to improve the model’s responses beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it’s geared up to break down complicated queries and reason through them in a detailed way. This directed reasoning process allows the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has recorded the market’s attention as a flexible text-generation design that can be integrated into various workflows such as agents, rational reasoning and data analysis tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, making it possible for efficient reasoning by routing inquiries to the most pertinent professional “clusters.” This technique allows the model to focus on various problem domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective designs to mimic the habits and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging material, and evaluate models against crucial security requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you’re utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the you are deploying. To request a limitation boost, produce a limit increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For instructions, see Establish authorizations to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, avoid harmful content, and wiki.dulovic.tech assess designs against key security criteria. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general circulation involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it’s sent to the design for reasoning. After getting the design’s output, another guardrail check is applied. If the output passes this last check, it’s returned as the last result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the design. It doesn’t support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.
The model detail page offers vital details about the design’s abilities, pricing structure, and application guidelines. You can find detailed usage directions, including sample API calls and code snippets for combination. The design supports different text generation tasks, including material production, code generation, and question answering, using its support discovering optimization and CoT thinking abilities.
The page also includes deployment choices and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be prompted to configure the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a variety of circumstances (between 1-100).
6. For example type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can configure innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service function permissions, and encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you might wish to examine these settings to line up with your organization’s security and compliance requirements.
7. Choose Deploy to begin using the design.
When the implementation is complete, you can evaluate DeepSeek-R1’s abilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive user interface where you can try out various prompts and change model specifications like temperature level and maximum length.
When utilizing R1 with Bedrock’s InvokeModel and Playground Console, use DeepSeek’s chat design template for optimal outcomes. For example, content for reasoning.
This is an outstanding way to check out the design’s reasoning and text generation abilities before incorporating it into your applications. The play ground offers immediate feedback, assisting you understand how the design responds to various inputs and letting you tweak your prompts for ideal results.
You can quickly evaluate the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends a demand to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical techniques: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let’s check out both techniques to help you select the method that finest fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design browser displays available models, with details like the service provider name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card shows essential details, including:
– Model name
– Provider name
– Task classification (for example, Text Generation).
Bedrock Ready badge (if appropriate), showing that this model can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the design details page.
The design details page includes the following details:
– The design name and supplier details.
Deploy button to deploy the model.
About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
– Model description.
– License details.
– Technical specifications.
– Usage standards
Before you deploy the design, it’s suggested to evaluate the design details and license terms to verify compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the automatically created name or produce a custom one.
8. For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
9. For Initial instance count, go into the number of instances (default: 1).
Selecting appropriate circumstances types and counts is vital for cost and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
10. Review all setups for precision. For this design, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
11. Choose Deploy to deploy the model.
The release procedure can take a number of minutes to finish.
When implementation is complete, your endpoint status will change to InService. At this moment, the model is ready to accept reasoning demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can conjure up the design using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:
Tidy up
To prevent undesirable charges, finish the steps in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
2. In the Managed deployments area, find the endpoint you desire to delete.
3. Select the endpoint, and on the Actions menu, choose Delete.
4. Verify the endpoint details to make certain you’re erasing the proper implementation: 1. Endpoint name.
2. Model name.
3. Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build innovative options utilizing AWS services and accelerated calculate. Currently, he is focused on establishing methods for fine-tuning and enhancing the reasoning performance of big language designs. In his downtime, Vivek delights in hiking, enjoying motion pictures, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor’s degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker’s artificial intelligence and generative AI hub. She is enthusiastic about constructing solutions that help customers accelerate their AI journey and unlock service value.